Sports Betting Tips - If Bets and Reverse Teasers

· 10 min read
Sports Betting Tips - If Bets and Reverse Teasers

"IF" Bets and Reverses

I mentioned last week, that when your book offers "if/reverses," you can play those rather than parlays. Some of you may not discover how to bet an "if/reverse." A full explanation and comparison of "if" bets, "if/reverses," and parlays follows, along with the situations in which each is best..

An "if" bet is exactly what it appears like. Without a doubt Team A and IF it wins you then place an equal amount on Team B. A parlay with two games going off at differing times is a kind of "if" bet in which you bet on the first team, and when it wins you bet double on the next team. With a true "if" bet, instead of betting double on the next team, you bet the same amount on the next team.

It is possible to avoid two calls to the bookmaker and secure the current line on a later game by telling your bookmaker you need to make an "if" bet. "If" bets can also be made on two games kicking off at the same time. The bookmaker will wait before first game has ended. If the first game wins, he'll put an equal amount on the next game though it has already been played.

Although an "if" bet is actually two straight bets at normal vig, you cannot decide later that you no longer want the next bet. Once you make an "if" bet, the next bet can't be cancelled, even if the second game have not gone off yet. If the initial game wins, you should have action on the second game. For that reason, there is less control over an "if" bet than over two straight bets. When the two games without a doubt overlap in time, however, the only method to bet one only when another wins is by placing an "if" bet. Of course, when two games overlap with time, cancellation of the next game bet isn't an issue. It ought to be noted, that when both games start at differing times, most books won't allow you to fill in the second game later. You need to designate both teams when you make the bet.

You can create an "if" bet by saying to the bookmaker, "I want to make an 'if' bet," and, "Give me Team A IF Team B for $100." Giving your bookmaker that instruction will be the identical to betting $110 to win $100 on Team A, and then, only if Team A wins, betting another $110 to win $100 on Team B.

If the first team in the "if" bet loses, there is no bet on the next team. Whether or not the next team wins of loses, your total loss on the "if" bet will be $110 once you lose on the initial team. If the initial team wins, however, you would have a bet of $110 to win $100 going on the next team. If so, if the next team loses, your total loss would be just the $10 of vig on the split of both teams. If both games win, you would win $100 on Team A and $100 on Team B, for a complete win of $200. Thus, the maximum loss on an "if" would be $110, and the utmost win will be $200. This is balanced by the disadvantage of losing the entire $110, rather than just $10 of vig, each time the teams split with the initial team in the bet losing.

As you can plainly see, it matters a great deal which game you put first within an "if" bet. If you put the loser first in a split, then you lose your full bet. If you split however the loser is the second team in the bet, you then only lose the vig.

Bettors soon discovered that the way to steer clear of the uncertainty caused by the order of wins and loses would be to make two "if" bets putting each team first. Rather than betting $110 on " Team A if Team B," you would bet just $55 on " Team A if Team B." and then create a second "if" bet reversing the order of the teams for another $55. The second bet would put Team B first and Team A second. This type of double bet, reversing the order of the same two teams, is called an "if/reverse" or sometimes just a "reverse."

A "reverse" is two separate "if" bets:

Team A if Team B for $55 to win $50; and

Team B if Team A for $55 to win $50.

You don't need to state both bets. You merely tell the clerk you need to bet a "reverse," the two teams, and the total amount.

If both teams win, the effect would be the identical to if you played a single "if" bet for $100. You win $50 on Team A in the initial "if bet, and then $50 on Team B, for a complete win of $100. In the second "if" bet, you win $50 on Team B, and $50 on Team A, for a complete win of $100. Both "if" bets together create a total win of $200 when both teams win.

If both teams lose, the effect would also function as same as if you played a single "if" bet for $100. Team A's loss would set you back $55 in the initial "if" combination, and nothing would look at Team B. In the next combination, Team B's loss would set you back $55 and nothing would go onto to Team A. You would lose $55 on each one of the bets for a total maximum lack of $110 whenever both teams lose.


The difference occurs when the teams split. Instead of losing $110 when the first team loses and the second wins, and $10 when the first team wins but the second loses, in the reverse you'll lose $60 on a split no matter which team wins and which loses. It computes this way. If Team A loses you will lose $55 on the initial combination, and have nothing going on the winning Team B. In the second combination, you will win $50 on Team B, and have action on Team A for a $55 loss, resulting in a net loss on the next combination of $5 vig. The increased loss of $55 on the first "if" bet and $5 on the next "if" bet offers you a combined lack of $60 on the "reverse." When Team B loses, you will lose the $5 vig on the initial combination and the $55 on the second combination for the same $60 on the split..

We've accomplished this smaller lack of $60 instead of $110 when the first team loses without reduction in the win when both teams win. In both single $110 "if" bet and the two reversed "if" bets for $55, the win is $200 when both teams cover the spread. The bookmakers could not put themselves at that type of disadvantage, however. The gain of $50 whenever Team A loses is fully offset by the extra $50 loss ($60 instead of $10) whenever Team B may be the loser. Thus, the "reverse" doesn't actually save us hardly any money, but it has the advantage of making the chance more predictable, and preventing the worry concerning which team to place first in the "if" bet.

(What follows can be an advanced discussion of betting technique. If charts and explanations provide you with a headache, skip them and simply write down the guidelines. I'll summarize the rules in an an easy task to copy list in my next article.)

As with parlays, the general rule regarding "if" bets is:

DON'T, if you can win more than 52.5% or even more of your games. If you cannot consistently achieve a winning percentage, however, making "if" bets once you bet two teams will save you money.

For the winning bettor, the "if" bet adds an element of luck to your betting equation that doesn't belong there. If two games are worth betting, then they should both be bet. Betting using one shouldn't be made dependent on whether you win another. However, for the bettor who has a negative expectation, the "if" bet will prevent him from betting on the next team whenever the first team loses. By preventing some bets, the "if" bet saves the negative expectation bettor some vig.

The $10 savings for the "if" bettor results from the truth that he is not betting the next game when both lose. When compared to straight bettor, the "if" bettor has an additional expense of $100 when Team A loses and Team B wins, but he saves $110 when Team A and Team B both lose.

In summary, anything that keeps the loser from betting more games is good. "If" bets reduce the amount of games that the loser bets.

The rule for the winning bettor is strictly opposite. Whatever keeps the winning bettor from betting more games is bad, and for that reason "if" bets will definitely cost the winning handicapper money. When the winning bettor plays fewer games, he's got fewer winners. Understand that the next time someone lets you know that the way to win is to bet fewer games. A smart winner never wants to bet fewer games. Since "if/reverses" workout exactly the same as "if" bets, they both place the winner at an equal disadvantage.

Exceptions to the Rule - Whenever a Winner Should Bet Parlays and "IF's"
As with all rules, you can find exceptions. "If" bets and parlays ought to be made by a winner with a confident expectation in mere two circumstances::

When there is no other choice and he must bet either an "if/reverse," a parlay, or a teaser; or
When betting co-dependent propositions.
The only time I can think of that you have no other choice is if you are the very best man at your friend's wedding, you are waiting to walk down that aisle, your laptop looked ridiculous in the pocket of your tux which means you left it in the automobile, you only bet offshore in a deposit account without credit line, the book has a $50 minimum phone bet, you prefer two games which overlap in time, you grab your trusty cell 5 minutes before kickoff and 45 seconds before you must walk to the alter with some beastly bride's maid in a frilly purple dress on your own arm, you make an effort to make two $55 bets and suddenly realize you only have $75 in your account.

Because the old philosopher used to say, "Is that what's troubling you, bucky?" If so, hold your head up high, put a smile on your face, look for the silver lining, and create a $50 "if" bet on your own two teams. Of course you could bet a parlay, but as you will notice below, the "if/reverse" is an effective replacement for the parlay should you be winner.

For the winner, the very best method is straight betting. In the case of co-dependent bets, however, as already discussed, there is a huge advantage to betting combinations. With a parlay, the bettor gets the benefit of increased parlay odds of 13-5 on combined bets that have greater than the normal expectation of winning. Since, by definition, co-dependent bets should always be contained within the same game, they must be made as "if" bets. With a co-dependent bet our advantage originates from the point that we make the second bet only IF one of many propositions wins.

It would do us no good to straight bet $110 each on the favourite and the underdog and $110 each on the over and the under. We'd simply lose the vig no matter how often the favorite and over or the underdog and under combinations won. As  link vào thabet 've seen, if we play two out of 4 possible results in two parlays of the favourite and over and the underdog and under, we can net a $160 win when among our combinations will come in. When to choose the parlay or the "reverse" when making co-dependent combinations is discussed below.

Choosing Between "IF" Bets and Parlays
Based on a $110 parlay, which we'll use for the intended purpose of consistent comparisons, our net parlay win when among our combinations hits is $176 (the $286 win on the winning parlay minus the $110 loss on the losing parlay). In a $110 "reverse" bet our net win will be $180 every time one of our combinations hits (the $400 win on the winning if/reverse without the $220 loss on the losing if/reverse).

When a split occurs and the under will come in with the favorite, or higher comes in with the underdog, the parlay will eventually lose $110 as the reverse loses $120. Thus, the "reverse" has a $4 advantage on the winning side, and the parlay includes a $10 advantage on the losing end. Obviously, again, in a 50-50 situation the parlay would be better.

With co-dependent side and total bets, however, we have been not in a 50-50 situation. If the favorite covers the high spread, it is much more likely that the overall game will review the comparatively low total, and if the favorite does not cover the high spread, it really is more likely that the overall game will under the total. As we have previously seen, when you have a positive expectation the "if/reverse" is a superior bet to the parlay. The actual probability of a win on our co-dependent side and total bets depends upon how close the lines privately and total are one to the other, but the fact that they're co-dependent gives us a positive expectation.

The point at which the "if/reverse" becomes a better bet than the parlay when coming up with our two co-dependent is really a 72% win-rate. This is not as outrageous a win-rate since it sounds. When coming up with two combinations, you have two chances to win. You only need to win one out of your two. Each one of the combinations comes with an independent positive expectation. If we assume the opportunity of either the favourite or the underdog winning is 100% (obviously one or another must win) then all we need is really a 72% probability that when, for example, Boston College -38 � scores enough to win by 39 points that the overall game will go over the full total 53 � at least 72% of the time as a co-dependent bet. If Ball State scores even one TD, then we have been only � point away from a win. A BC cover can lead to an over 72% of the time is not an unreasonable assumption under the circumstances.

In comparison with a parlay at a 72% win-rate, our two "if/reverse" bets will win an extra $4 seventy-two times, for a total increased win of $4 x 72 = $288. Betting "if/reverses" will cause us to lose an extra $10 the 28 times that the outcomes split for a complete increased loss of $280. Obviously, at a win rate of 72% the difference is slight.

Rule: At win percentages below 72% use parlays, and at win-rates of 72% or above use "if/reverses."